# Pathogenicity of *Leptographium terebrantis* to loblolly pine: effect of inoculum density

John K. Mensah<sup>1</sup>, Ryan L. Nadel<sup>1</sup>, George Matusick<sup>2</sup>, Zhaofei Fan<sup>1</sup>, Mary A. Sword Sayer<sup>4</sup> and Lori G. Eckhardt<sup>1</sup>

<sup>1</sup>Forest Health Dynamics Laboratory, School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama; <sup>2</sup> The Nature Conservancy, Fort Benning, Georgia; <sup>4</sup> USDA Forest Service, Southern Research Station, Pineville, Louisiana

Forest Health Dynamics Laboratory



### orest rieditii byridiiites Edbordo

# Background

L. terebrantis – Southern pine decline







Eckhardt, 2003

Alabama Forestry Commission

School of Forestry and Wildlife Sciences, Auburn University

### Forest Health Dynamics Laborator

- Pathogenicity of L. terebrantis
  - Seedlings and saplings
  - Under greenhouse
  - Field conditions
- Inoculation techniques
  - Agar plugs of fungal mycelia
  - Spore suspension
  - Colonized substrates



Lee et al, 2006



Matusick, 2010

School of Forestry and Wildlife Sciences, Auburn University

### Forest Health Dynamics Laboratory

- *L. terebrantis* ability to cause decline symptoms in field grown trees has not been investigated
- Mimic the feeding habits of the bark beetles
- Toothpick inoculation technique



School of Forestry and Wildlife Sciences, Auburn Universit

### Forest Health Dynamics Laboratory

## **Objectives**

- Determine the efficacy of *L. terebrantis* colonized toothpicks for artificial inoculation in stems of loblolly pine saplings
- Determine the impact of inoculum density of *L. terebrantis* on loblolly pine saplings

# Hypotheses

- Toothpick inoculation technique will cause infection and expression of symptoms in loblolly pine saplings
- Tissue damage caused by *L. terebrantis* will significantly increase with inoculum density

School of Forestry and Wildlife Sciences, Auburn University

### Forest Health Dynamics Laborator

## **Study Area**

- Solon Dixon Forestry Education Center Andalusia, AL
- Naturally regenerating stand loblolly, slash, long leaf
- Loblolly pine trees selected
  - Without signs and symptoms of disease
  - Ground level diameter: 2.5 inches
- 18 trees per treatment
- L. terebrantis was cultured on toothpicks and used for inoculation
- Post inoculation assessment 8weeks

School of Forestry and Wildlife Sciences, Auburn Universit

# Methods • Five treatments - Two inoculation points (IP) at 180° apart (2IP) - Four at 90° apart (4IP) - Eight 45° apart (8IP) - Sixteen 22.5° apart (16IP) - Control











# Relationship between Tissue Occlusions and Inoculum Density

| Equations                      | Pr > F | R-Square | Root MSE | Coeff Var |
|--------------------------------|--------|----------|----------|-----------|
| Occlusion = -4.42 + 12.27(ID)  | <.0001 | 0.4986   | 13.9529  | 53.1596   |
| log(OL) = 4.31 + 0.156(ID)     | <.0001 | 0.3275   | 0.2530   | 5.3839    |
| log(volume) = 1.79 + 0.677(ID) | <.0001 | 0.6134   | 0.61042  | 17.49     |

School of Forestry and Wildlife Sciences, Auburn University

### orest Health Dynamics Laboratory

### Conclusion

- L. terebrantis colonized toothpicks succeeded in causing infection of saplings of loblolly pine
- No decline symptoms were observed
- Tissue occluded area, length and volume increased with increasing fungal inoculum density
- Inoculum density associated best tissue occlusion volume

School of Forestry and Wildlife Sciences, Auburn University

### Forest Health Dynamics Laboratory

# Acknowledgements

- Dalton Smith
- Sarah Peaden
- Andrea Cole
- Shrijana Duwadi
- Pratima Devkota (PhD)





Rayonier

School of Forestry and Wildlife Sciences, Auburn Universi